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ABSTRACT

The radar problem is generalized to wideband signals and receivers.
This gencralization necessitates consideration of a wideband ambiguity
function and of distributed targets. System design methods, using newly-
discovered properties of the wideband ambiguity function, the trajectory
diagram, and computerized clutter suppression techniques, are established.
The application of these methods, combined with distributed target and accel-
erating target considerations, reveals signals that are optimally tolerant to
doppler, acceleration, and distributed target effects., These signals are

compared with those used by several species of bats.
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"One walks step by step into the darkness. The motion itself is the only

truth, "

Ingmar Bergman, The Magician

"We set out from a dark point, we proceed toward another dark point--
honest, clean, good--and are consoled, "

Nikos Kazantzakis, in a letter to his first wife

""He can see in the dark--no small power this, in a world which is one-half
shut from the light. "

Bram Stoker, Dracula



CHAPTER 1

INTRODUCTION

1.1 General Statement of the Problem.

This dissertation considers a fundamental question of radar or active

sonar system design:

For a given environment and system constraints, what is the best
signal-filter pair to use in order to gain information about an objeci via its

echo?

It will be worthwhile to examine the meaning of this question in
some detail.

The "environment" refers to the channel through which the signal
must propagate and to all possible spurious echoes that can occur when the
target is surrounded by wave-reflecting ""clutter" or is located in a
reverberation-prone setting.

""System constraints" are the limitations inherent in any physical

system. An example is found in bats; by virtue of finite lung capacity, bat

waveforms are subject to a constraint on signal energy. Other examples might

be maximum power, mean square bandwidth, and system noise level.

The word "best' can be translated into many mathematical measures

of "'goodness' such as minimum mean square error, maximum signal to inter-

ference ratio, or maximum probability of detection for a given false alarm

probability.
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The signal is a transmission used to induce echoes. The filter is a
system designed to receive these echoes and to process them in such a way
as to extract information descriptive of a target (including its presence or
absence). A 'signal-filter pair'" (as opposed to a signal or filter taken alone)
is considered because of the inherent dependence of the receiver upon the
signal which it is designed to process. This is why the discipline of radar
signal design might justly be called ""radar system design'.

"Information" not only includes the inevitable question about the
presence or absence of the target (detection), but may also include acquisi-
tion of knowledge about the shape or number of targets present (range reso-
lution), their speeds (velocity resolution) and even higher time derivatives of
range (acceleration, etc.).

Finally the "object" or target is an important part of any problem
specification, The cross-sectional area of an object determines what frequen-
cies are needed in order to receive a strong return (above the Rayleigh scatter-
ing region). The depth or range-extent of an object determines whether it can
be treated as a point target (negligible thickness in range) or whether it must
be treated as a distributed target. Finally, if the target is indeed distributed
in range, one must consider the dependence of reflected energy and power
upon the transmitted waveform.

The fundamental question, although simply phrased, is thus seen to
contain many nuances and complications. The various complications and their

effects on the problem will be the major topics of discussion.



1.2 The Correlation Process.

It has been demonstrated [1 , 2 ] that a correlation process is a sufficient
statistic for the detection of a signal in additive white Gaussian noise. Thus,
if a detector correlates all received signals with the waveform that was trans-
mitted (or a hypothetical version of the echo), the result of .this correlation can
be used as the basis for a decision concerning the presence or absence of the
target (likelihood ratio test).

If the transmitted waveform is u(t) and the received waveform is r(t),

then the correlation between the two signals is

fmu(t) r* (t) dt 1.1

- 0

where the asterisk indicates complex conjugation. It is assumed throughout
this dissertation that the filter used to receive radar-sonar echoes performs a

correlation operation.

1.3 The Wideband Assumption and the Waveform Design Problem.

In contrast to much past radar research, the signals used in this thesis
are not necessarily confined to a small band of frequencies around a large car-
rier frequency. That is, signals are not narrowbanded per se. This depar-
ture from previous work is motivated by the recent development of wideband
radar and sonar systems,

An immediate consequence of the wideband assumption is that the
effect of target velocity can no longer be approximated by a simple transla-

tion or "shift" in frequency. The doppler effect is, in reality, a compression



(or stretching) of the signal, mathematically described by a scale factor in
time or frequency. This more general model of the received signal r(t)
results in a version of Equation (1.1) that is different from the correlation
of narrowband waveforms using a ' doppler shift" assumption.

The new version of Equation (1.1) for constant velocity point targets
is known as the wideband ambiguity function. It is a function of two variables,
range and velocity, and is a mathematical description of the behavior of a
radar -sonar system for a particular signal-filter pair. Specifically, the
ambiguity function describes the reaction of a correlation processor to all
possible delayed and doppler compressed versions of the transmitted signal.
It therefore determines the ability of a radar system to unambiguously mea-
sure range and velocity of a given target, to recognize a time-scaled version
of the transmitted signal, to resolve targets on the basis of their differing
ranges and/or velocities, and to distinguish a target within a cluttered
environment.

If the ambiguity function ie indeed descriptive of the above system
capabilities, its characteristics should be studied. The relations between
these characteristics and signal pariineters (such as various time-spectral
moments) are particularly importas{. Properties of the wideband ambiguity
function are therefore investigated in Chapter III.

The analysis in Chapter III is first concerned with a Taylor series
expansion of the wideband function about the origin of the range-velocity

plane. This expansion reveals origin properties that are particularly relevant
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to discussions of signal resolving capability. A comparison of wideband origin
properties with their narrowband counterparts helps to illustrate the nature of
the narrowband assumption. The relation between wideband and narrowband
ambiguity functions is then made even more explicit by the derivation of an
integral transformation between them. Volume properties are studied. The
effect upon the wideband function of certain fundamental operations on the
signal (e. g., time scaling, differentiation) are investigated. The behavior of
the function along certain curves on the range-velocity plane is written in
terms of autocorrelation functions. Symmetry and separability properties

are discussed. Finally, the consequences of narrowbandedness (i.e., ambig-
uity function dependence upon the ratio of signal bandwidth to carrier frequeacy)
are examined from a wideband viewpoint.

All of the above properties are investigated in Chapter II; not all of
them are used in the sequel, but they are included for completeness. The
reader may therefore wish to skip Chapter III on first perusal, since subse-
quent chapters refer back to previous results as they are utilized.

Ii is easy to casually observe that radar system capabilities depend
upon the ambiguity function; it is more difficult to mathematically define the
desired capabilities in such a way as to derive an optimal signal-filter pair.

It is therefore important to demonstrate how ambiguity function character-
ization can be used to derive signal-filter functions that satiefy a particular
need. Such a demonstration is given in Chapter IV, where the desired pro-

perty is designated to be doppler tolerance. A doppler tolerant signal is
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defined as one which, when correlated with a time-scaled (energy normalized)
version of itself, produces a maximum correlator response which is nearly
as large as that obtained by autocorrelation.

As already indicated in Section 1,1, constant velocity point targets
alone in space do not exemplify most practical radar-sonar problems. The
interaction of a signal with accelerating targets, distributed targets, and
reverberatory (or cluttered) environments must be considered. These prob-
lems are investigated in Chapters V and VI. In Chapter VI, optimal signal-
filter pairs are again derived, this time using a computer algorithm for
clutter suppression (with wideband waveforms).

A useful description of signal-target interaction is found in Altar's
trajectory diagram. These diagrams are applicable not only to modelling
echoes from point targets with nonlinear trajectories; they are also descrip-
tive of general time-varying-delay effects, and can be used to depict the
echoes of certain distributed targets (viz., those that can be represented as
arrays of point targets). Each of these applications is investigated in its

appropriate context.



CHAPTER II

CONSTANT VELOCITY POINT TARGET:
MODEILS OF THE RETURNED SIGNA L AND CORRESPONDING
VERSIONS OF THE AMBIGUITY FUNCTION

In order to utilize the sufficient statistic (1. 1) one must have an
expression for r(t), the received signal, in terms of the transmitted wave-
form u(t). In general, r(t) will depend not only upon u(t) but also upon the
environment, the shape of the target, and how the target is moving. In this
chapter exceedingly simple assumptions are made concerning these echo-
determining factors.

Assume first that the environment is free of clutter (spurious reflec-
tions) and that the channel contributes no signal distortions other than addi-
tive white Gaussian noise. Secondly, assume that the object is a point target.
The point target assumption insures that a perfect replica of the transmitted
signal would be reflected from the object if it were held motionless. This
implies not only negligible thickness in range but also a large reflecting area
(relative to maximum signal wavelength) so that reflectivity is not frequency
dependent. Finally, the point target is assumed to be moving at a constant
velocity (or not moving at all).

The situation described by the above assumptions is admitiedly over-
simplified, but it provides a basis for the consideration of more complicated

problems that will be discussed later.



2.1 The Narrowband (Woodward) Model.

In addition to the assumptions already set forth, P. M. Woodward [1 ]

also assumed that the transmitted signal was narrowbanded. That is, prac-
tically all of the signal energy is assumed to be contained in a narrow range
of frequencies distributed around the carrier frequency. The carrier fre-
quency (defined here as the centroid of the analytic signal's power spectral
density function) is many times greater than the width of the frequency band
within which almost all the signal's energy is to be found.

Under these conditions, the echo has the form:

r¢) =ut +T)exp (-j ¢ t) (2.1)

where T = negative of time delay
and o=-( wov)/ Vv = frequency "shift" caused by the doppler effect.
The narrowband idea is so prevalent in introductory physics that one usually
hears the effect of target velocity described as a ' doppler shift".

In the foregoing definitions, W is carrier frequency in radians, Vis
speed of signal propagation and v is radial component of target velocity
(v= -R), taken to be positive for motion toward the receiver and negative
away from it.

Almost all radar signal design has been concerned with the narrowband
model until quite recently. As a result, a great many properties are known for

the corresponding correlation response (or ambiguity function):

x(l) r,¢) = j u(t) u* (t +7) e P, (2.2)

uu
- ®



Many of these properties have been summarized in a recent book by C. E. Cook
and M. Bernfeld [4 ] Although a discussion of ambiguity function properties
should be relegated to the next chapter, one rather important characteristic
will be mentioned here for motivation purposes: The ability of a signal to re-
solve between two point targets with slightly different ranges and/or velocities
is dependent upon the signal's time-bandwidth product. In particular, accu-
rate range resolution is associated with large bandwidth. One therefore
expects the designer of sophisticated high-resolution radar signals to become
dissatisfied with the narrowband assumption as available system bandwidth
increases. At the same time, sonar signals must violate the narrowband
assumption quite often, since the carrier frequencies involved are on the
order of 10+4 to 10+8 lower than those used for radar. More will be said

about this in Chapter III.

2.2 The Wideband (Kelly-Wishner) Model.

A 1965 paper by E. J. Kelly and R. P, Wishner [5] has led to a
generally accepted version of the ambiguity function for wideband signals.
For uniform-velocity point targets the Kelly-Wishner argument may be

phrased as follows:

The returned signal is v(t) = u(t - 7(t)) before energy normalization.

Consider the differential part of signal (or the ""photon") that returns at



time t - T(t); this bit of signal must have been reflected from the target at
time t - T(t)/2. But the range of the target at the time of reflection is

VT(t)/2, by definition. That is,

Range of target at time of reflection

R(t - 7(t)/2)

vT(t)/2 @. 3)

Expanding T(t) in Taylor series about some reception time to and

expanding R(t) about the corresponding reflection time t,/2 gives

T(t) to + Q(t - to) (2. 4a)

R() = Rt /2) - v(t - t /2) @. 4b)

where the higher order terms in the expansion are zero by the assumption

of uniform target velocity. Notice that
Th) =t i Tt)=1T; R(to/2) = -v. 2. 5)
Substituting (2. 5) into (2. 3) yields Vto/z = R(t_/2).

Differentiating (2. 3) with respect to t:

VT@)/2 = (1- T®)/2)R(t - T(t)/2) . 2. 6)
Evaluating (2.6) at t = to by using (2. 5):

€/2)V-v)=-v; C=(2v)/(V-V). @.7)

10
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Notice that

t-‘T(t)=t-to-C(t-to)=(1-C)(t-to), 2.8)
so that

rit) = u(t -T7(t))

=uf@-g¢-t)l

~y

= u[~=Y | ¢ -t )]

= ufs(t -to)] . (2.9)
Here s, which will be called the ""doppler stretch (or compression) factor, "
equals (1 +3)/(1 - 3), wherep = v/v.
Since the derivation of the correlation process is based upon the
assumption that all signals are normalized to some energy, one must multiply

u(st) by the factor 81/2:

@

E=/ lut) |2dt= /lsl/zu(st) |2dt. (2.10)

- 00

The resulting ambiguity function is then:

=]

x(zu) (T, 8)= 51/2 / u(t) u* [s(t + 7) ] dt. (2.11)

u

2.3 Description of the Returned Signal Obtained from Altar's
Trajectory Diagrams.

In Chapter 11 of his book, Rihaczek [6 ] introduces the Altar trajec-
tory diagram* as a useful concept for qualitative visualization of the interaction

between signal and point target. It will be shown, however, that the trajectory
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diagram can be used to obtain quantitative results as well. This idea will be
further discussed in Chapter IV. For now, the trajectory diagram is intro-
duced as a graphical method to derive the doppler stretch factor, s.

The trajectory diagram of a point target is a plot of target range
(in seconds) versus measured time lapse between transmitted and received
signals. If range as a functionof time is written R(t), then the trajectory of
the target is traced out on the graph of R(t)/:versus t, as shown in Figure 2.1

for a constant velocity target.

TARGET TRAJECTORY

i mln!u" v 2R(to)/\~r

Figure 2.1, Trajectory Diagram for a Single ""Photon",

* The author has tried to obtain Altar 's original paper, but at the time of
his inquiry it was still classified ""Confidential. "'
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With reference to Figure 2.1, consider a "photon' of energy
radiated toward the target at t=0., The time taken for this photon to reach
the target is R(to)/\7 , 80 that the reflected photon is received after a time
2R(to)/‘7' Here, to is the instant at which the photon is reflected. Thus
to = R(to)/vv . The '"path" of the photon on the trajectory plot may therefore be
represented as the legs of a 45° right triangle with apex at the trajectory, as
shown by the construction lines in Figure 2,1,

The trajectory diagram of Figure 2.1 can be used to show that the
doppler stretch factor is (1 + 3)/(1 - 8), where g = v/;; . The argument is as
follows.

Consider two photons transmitted at t= 0 and t = t_, respectively.

1!

The construction lines associated with these two photons are shown on the

trajectory diagram of Figure 2.2,

Figure 2.2. Trajectory Diagram for Two '"Photons".
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If t1 = st_, then what is s ? To answer this question, draw a more

2 9
detailed picture of the trajectory (Figure 2.3) with a horizontal line through

the point A on Figure 2.2,

Figure 2,3. Trajectory Diagram Determination of the Doppler Factor, s.

From the trajectory diagram and the 45° construction lines, it is
evident that 6= 450 and €= 900, where § and € are angles as shown in Figure
2.3. Furthermore, the slope of the trajectory = -il/7= v/iv= g = tan ¢ .

Since the sum of the interior angles of a triangle must be 1800, it follows
that 6= 90° - o . But p+0= 1800, 80 ¢ = 90° + o . From thi‘s it follows
that y = 180° - 6-0¢= 45° - a. Since x is one leg of a 45° right triangle with

/2 1/2

hypotenuse t_, it must be that x = t2/21 Similarly, y = t1/2 . But x/y

2’
o] -1
=tanvy ;tan(45 -tan B)=x/y= t2/t1 . Now
tan(A+B) = (tan A + tan B)/(1 - tan A . tan B)
so that

s = 1/tan(45° - tan " B)= (1+B)/(1 -3) .
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Trajectory diagrams yield a description of the reflected waveform
in terms of easily recognized attributes of the signal. Examples of easily recog-
nized attributes are the signal 's zero crossings (real zeros), its maxima and
minima (zero crossings of its first derivative), etc. Figure 2.4 illustrates a
trajectory diagram derivation of reflected real zero locations, given the trans-

mitted signal and the target trajectory.

- |

——

I W—— ZERO LOCATIONS OF
TRANSMITTED SIGNAL REFLECTED WAVEFORM

Figure 2.4, Trajectory Diagram for an Arbitrary Signal,

2.4 Another Version of the Ambiguity Function,

There is one model of the received signal that has not yet been
mentioned. This model leads to a wideband ambiguity function that has often
appeared in the literature [7,8,9]. It conceives of the energy-normalized

echo as
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r(t) = sl/ 2u(st -t) (2.12)

where to corresponds to the delay of the first transmitted photon., Then

©

@)

xuu

(T,8)= 51/2 f u(t) u* (st + 7)dt . (2.13)

The three versions of the ambiguity function will be compared and
discussed in future chapters. A table summarizing the above definitions is to

be found in Section 3.1.



II1. Properties and Interrelationships of the Various

Versions of the Ambiguity Function

The constant velocity point target ambiguity function is in
fact a correlation of hypothetical and actual target returns. The
hypotheses are in this case limited to range and target velocity.

If a given mismatch between guessed and actual parameters results in
a small correlator response (compared with the response to a correct
guess), then the system will be sensitive to such an error and will
be capable of resolving between point targets whose ranges and
velocities differ by the given amount. On the other hand, if the
mismateh results in a correlator response that is nearly as large

as that obtained for a correct guess, the system will be incapable
of determining whether the parameter hypotheses were indeed correct.
Even so, a large correlator response to a poor guess will at least
inform the radar of a target's presence.

To always detect a target (regardless of its range and velocity)
one must use a whole set of correlators such that at least one
correlator has a large response (exceeding a threshold that is set
in accordance with a given false alarm probability) for each point

on the range-velocity plane.¥

¥ If the correlators are realized as matched filters, then a con-
continuous or running hypothesis on time delay is automatically
implemented. For this case, at least one matched filter should
have a large response (exceeding threshold) for every possible
target velocity.

17
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An excellent resolving signal (with what is visualized as a "thumb-
tack" ambiguity function, i.e., with a small correlator response

to all bad guesses) will therefore require many correlators for
foolproof target detection. The price of resolution capability is
thus paid in system complexity.

The above considerations are introduced in order to illustrate
the dependence of radar-sonar system capability upon ambiguity
function characteristics. In order to intelligently design a& radar
system that uses correlation processing, it is necessary to deter-
mine the behavior of the ambiguity function in terms of hypothetical
and actual target parameters. This behavior, in turn, is generally
dependent upon the signal waveform.

The purpose of this chapter i; to amass knowledge about the
ambiguity function and about any signal characteristics that can
alter the behavior of this function in some straightforward fashion.
The chapter is organized as follows:

After finding expressions for (t, s) in terms of hypothetical
and actual target parameters, the behavior of the ambiguity function,
in the neighborhood of an accurate hypothesis, is examined via a
two dimensional Taylor series. This examination reveals the depen-
dence of resolution capatility upon certain time-spectral moments of
the signal. Important similarities between the wideband and narrow-
band functions are then demonstrated, and an integral transformation
between the two functions is derived. Ambiguity volume is also
found to depend upon the signal's time-spectral moments, particularly

mean-square time duration and carrier frequency. Some signal
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transformations are then investigated to reveal their effects upon
the ambiguity function. It is demonstrated that, when the ambiguity
function is evaluated along certain curves in the (t,s) plane, it
can be written as an autocorrelation function. Separability tests
are then discussed; such tests are important to determine whether

a given function (perhaps suggested as an ideal ambiguity function
for a given situation) is indeed an ambiguity function. Finally, the
dependence of wideband ambiguity function behavior upon the ratio of
bandwidth to carrier frequency (and the ratio of timewidth to mean

time) is investigated.

5.1 Hypothesis Testing

The argument leading to the correlation process (1.l) is
generally applicable to the detection of a known signal u(t) immersed
in additive white noise: r(t) = u(t)+n(t). In many radar/sonar
problems, however, certain parameters of the received signal are
unknown a priori. For the simple case of a constant velocity point
target, the range parameter 1 and the Doppler factor s are, in
general, unknown. The known signal u(t) then actually becomes a
guessed or hypothesized signal to be correlated with received data
r(t), and the magnitude of correlator response is indicative of the
goodness, in the sense of maximum a posteriori estimation, of the
guess. If the signal is such that the ambiguity function is negligible
for a bad guess, then correlation of received data with a bad guess

will not even indicate the presence of the target.



As a result of this uncertainty concerning the echo, it
behooves the radar system to make many simultaneous guesses about
target parameters. The signal corresponding to each guess would
then be correlated with received data. The largest magnitude of
correlator response would indicate the best guess (assuming that
there is actually a target present). Such a system not only detects
the target but also makes maximum a posteriori (MAP) estimates of
the parameters associated with its trajectory. The system is usually
implemented as a bank of matched filters in parallel (Figure 3.7 in
Rihaczek [6]).

It is possible to have a large-negative correlator output
if, for example, T is guessed with just a small error and the signal
is nearly monochromatic. But it is mathematically convenient to
have & measure which is a positive function of the accuracy of
parameter estimation. Most of this dissertation will therefore con-
cern itself with the quantities |X&£3)|2, i=1,2,5, the magnitude-
squared correlator responses.

It is easily demonstrated that the correlation of received
data with a hypothetical version of the echo does not affect the
general forms of the magnitude-squared ambiguity functions.

Let s, (or ¢,) and 7, be the hypothesized Doppler and time
delay parameters, respectively. Let S (or ¢T) and T, be the actual
parameters of a constant velocity point target. Then

-3t Igt
|Xu(1})(Th’TT:¢h:¢T) |2 = | f R, 1'h)e "u (t+ TT)e ! dt|2



my B W -

where unlabelled limits of integration are hercafter Laken to be

(-% ~). Changing variables,

x g2 - | fued” e+ eI atf?
vwhere

# < dp - fps R T (5-1)
In the narrowband case, then,t and ¢ are simply the differences

between hypothetical and actual parameters.

Similarly,
(2) 2 1/2 1/2 « 2
Xqu (1h,TT,sh,sT)| = | s u[sh(t-+Th)]sT u [sT(ti-tT)]dtl .

Changing variables:

e, 2 < 1M [ stes a2

where
s = sT/sh; T = sh('rT - ) (3.2)
For the third version of the ambiguity function:
(3) 2 _ Do /
Iqu (1,8)] has s = sT/sh, T= T, -\sT/sh)Th . (3.3)

The above results are summarized in Table 3.1.

21
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5e2 Origin Properties

3.2.1 Taylor Series Expansion

As a consequence of equations (5.1 - 3.4), one sees that
a good guess about target parameters would make s, =~ s (¢h ~ ¢T)
and T = O. It is thus desirable to know the properties of the magni-
tude-squared ambiguity function near the origin (s = 1 or ¢ = 0,
T =0). Also, the shape of the constant amplitude contours near the
origin is somewhat indicative of the volume distribution of the central
lobe of |X|2. The shape of these contours is dependent upon certain
moments of the signal. The radar engineer can thus approximately
estimate the effect upon the ambiguity functior of a particular
change in his signal if he knows the behavior of !X!z near the origin.
Consider, then, a two-dimensional Taylor series expansion

of IXuée)(r,s)|2 around the point (t,s) = (0,1):

31x, {2 (,0) 12

|Xm(12)(r,S) 2 - IXm(f)(o,l)!2+ T

ot
(0,1)
+ -1\5|Xu1(12)(1,s)l2 +12- aelxm(f)(_r,s)!?
s=b s 2 N
(0,1) ! (0,1)

Flr @0 F )2 Fix e B

2 2
aT as (0 ’l) as

+ 1(s -1)

(0,1)

+ higher order terms. (3.5)



(8] PI
with [ u(t)u¥(t)dt =1 and Xuial(r,s) defined as in (2.8),
=00
the derivatives on the right side of (3.5) are calculated in
Aprendix A. It is assumed here that u(t) = a(t)exp(jo(t)) is complex

and analytic [10,11], i.e., that a(t) and 6(t) satisfy the relation
a(t)cos 6(t) = H{a(t)sina(t) ] (3.6)

where H{°‘] denotes Hilbert transformation. See the discussion
preceding equation A.6 in Appendix A.

¥
Application of the Schwarz inequality to ‘Xu£2)|2 gives

iXu(f)(“r,s) i25 ﬁu(t) |2dt-sf|u[s(t+ 1)11%t = |xu(ue)(o,1)|2=1 (5.7)
with equality if and only if
u(t) = kgiu[s(ti-r)]; (t,8) = (0,1). (3.8)

Therefore , |xu(ug) (t,s) 1% <1, with maximum value at the
origin (0,1). In the immediate neighborhood of the origin a con-
stant amplitude contour of |X|2 can then be written in temms of a

constant 62:

?xu(uE) (1,8)]° =1 - &° where 5° << 1. (3.9)

* Some of the following discussion is modelled after a similar
analysis of the narrowband ambiguity function by C. H. Wilcox [12].



The fact that

‘I ficiently small.

Hel242 Contour Shape

Within a very
] order terms of eguation

(3.9) become identical.

derivatives at (0,l) are

3% (2 (1,5) 2

le2 has & maximum at the origin would secm

to imply that the contour (3.9) is usually an ellipse for 62 suf-

Proof of this conjecture follows.

Near (t,s) = (0,1)

small neighborhood of the origin, the higher
(3.5) may be neglected, so that (3.5) and
Using the fact that the first partial

zero (Appendix A):

82 |xu(u2)(1';5) |2

1l 2
1+ =it +21(s-1)
2 2
| o (0,1) %o (0,1)
32x (@) (7 oy |
+(sm1)° — W - 1-6°. (5.10)
EE (0,1)
If
82|X (2)(1 s)|2
¥ e -% s . (3.11a)
o (0,1)
82|X (2)(1 s)i2
RN - (5.11b)
ds (n,1)
L P B a0
7 R T v (51te)
(0,1)
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then the constart amplitude contour is described by the equation

2 2
}\Tl

2

+ 297y (48) )4 ng(csl)g - 8 (5.12)

where Asl =8 -1. If this is truly the equation of an ellipse,

then there should exist a rotation of axes:

T cos A sino 1'1
= (3.13)
0 -sineg cos 0 A'sl
such that
2 2
I+ (Aig - (5.14)
a b

& more familiar form of the equation for an ellipse.
Writing (1, As) in terms of (Tl, 28y 6) in (3.14) and

comparing the resulting equation with (3.12), it 's found that

2 - (cos®e/a%) + (sin%0/b%) (5.158)
y = sinécoso [(1/a°) - (l/bz)] (5.15b)
712 = (singe/aQ) + (coseo/be) . (3.15¢)

An illustration of the relation between the quantities in

equations (3.15) is shown in Figure 3.1.



Figure 3.1. Right-Triangle Relationship of Origin Derivatives
and Tilt of Wideband Uncertainty Ellipse

The triangle of Figure 3.1 is of immediate importance to the radar
signal designer, as it illustrates the ways in which the angle of
tilt (with respect to the t-axis) of the wideband ambiguity ellipse
depends upon the signal.

2

Equations (3.15) can be solved for a“ and b° (with the help

of Figure 3.1):

& = 2 (3.16a)
2402+ /02 -1P)2 + 1P
2
By (3.16b)

2
A 402 - J02 D)2 4 1yf
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g

Area = rab =
/ )\2']2 _ 72

(3.16¢)

For all the quantities in (3.16) to be positive, real, and

finite, the following inequalities must be true:

2 >0 (3.17a)

2

" >0 (3.17b)
A2 > 42 (3.17¢)

If these inequalities hold true, then the transformation
(3.13) will give an equation of the form (3.14) and the contour
|xu(u?) |°- 1 - 52 will indeed be elliptical. In fact, the inequalities
(3.17) can all be verified by the Schwarz inequality, although the
proof of (3.17c) requires a special version of it.

From. Appendix A and equations (3.11):

2z =Jr|u’(t)|2dt - |ﬁl(t)uﬂ"(t)dtl2 (3.18a)
n2 =ft2|u'(t)|2dt - Iftu(t)u*'(t)dt|2 : (3.18b)
y =fclu'(t)|2dt - Re{fu'(t)u*(t)dtftu(t)u*'(t)dt} (3.18¢)

As remarked in Appendix A, these quantitles are the same for both

(22 ana 1 (D)2
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Proof of (5.l17a):

For unit energy signals,

.Iu’(t)ledt = /A|u"(t)|2dt ﬂu(t)|2dt > | fa(t)u* (t)atl?

i,

with equality if and only if

u(t) = ku'(t) . (3.19)

It would appear that an exponential is a counter-example
to the inequality, since a solution to (3.19) is u(t) = klexp(ket)

where k, and k, can be complex, e.g., u(t) = klexp[(b+:jwo)t].

2
But in order for the exponential to be of finite energy, it must

have one of the forms:

(
kle(b+Jab)t , t>0
uit) = < (3.20a)
0 , t <0
\
or
(b+ Jo ) |t
u(t) = ke . (3.20b)

’

The first form (3.20a) results in an undefined (delta function)
derivative at t = 0, so that )\2 will also be undefined. Such a signal

is inadmissible per se. For the second form (3.20b),
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u’(t) = kl(b+,jmo)exp[’\b+;]mo)|t|]-[sgnt] , vhere
+1, t >0
sgn t= 0, t=0
-1, t<0.

But then u(t) # ku’(t) for a consistent value of k, so that (3.19)

is no longer satisfied.

Proof of (3.17b):

\/;2|u'(t)|2dt\/]u(t)|2dt > |ftu(t)u*'(t)dt|2 ,
with equality if and only if
ks
u(t) = ktu'(t) or u(t) = Kkt <. (3.21)

Once again, sudden truncation results in undefined moments, so that
(3.21) must be satisfied for all t. Since there exists no value

k
of k, such that & t 2 nas finite energy, (3.21) defines a set of

inadmissible functions. Thus (3.17b) is verified.

Proof of (3.17c):

Given the standard form of the Schwarz inequality:

flu(t)lzdtf v(e) Pat - | [ uew*®)atl? >0,  (3.22)



R)|

one can derive a special version involving more functions by letting
u(t) = rf(t) + cg(t), where r and ¢ are real scalars. This procedure
has been suggested by E. F. Beckenbach and R. Bellman in their book,

Inequalities [13]. Then (3.22) becomes

Qe [ - [fvnas [ e

+ re f W*dt[ f fg*dt + [ gf*dtjl - f fv“df:[ vg*dt
A\
- f gv*dt f vi*dti+ c2 I: f gg*dt f vv¥dt - f gv¥dt f vg“dtl

> 0 (3.23)

for all r,c.

Equation (3.23) may be written xr° + 2yrc + 202 > 0, where x >0
and z > O by the usual Schwarz inequality. But (3.23) is then a
special case of Hermitian form (14]. Accordingly, the inequality

always holds provided xz - y2 >0, or

[J’|f|2dtf lv|%at - |f fv“dtler |g|2dtf lv|at - lfgv*dtle}

> [J |v|2dt-Re%j}g*dt} - Re%ff‘v“dtfvg*dt} ]2 (3.24)

Letting v(t) = u(t), g(t) = tu'(t), £(t) = u'(t) {(5.25)
in (3.24) gives A°n- > -2, with equality if and only if rf+cg=kv,

or
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K
ru' + ctu' = ku; u =k (r+ct) &, (3.26)

But (5.26) is inadmissible for the same reason that (3.21) was,
so that the validity of (3.17c) has been demonstrated.

It has been shown that the constant-amplitude contours

of |X (2) 2

- near (0,1) are indeed elliptical in shape, with axes

determined by equations (3.16) and tilt-of-ellipse determined by

Figure 3.1, in conjunction with equations (3.18).
(2) 2
3.243 Average Curvature of |qu (1,8)|° at the Origin

If the ambiguity function were expressed in terms of
polar coordinates (p,0) with p=0 at (1,s)=(0,1), then a measure
of sharpness of the peak at the origin would be the quantity

82|x (2)I 2
uu

2
dp =0

averaged over all 0¢(0,2n):

2
2
c E'el—n f 3—2 |X (2) (p,9) | do . (3.27)
op
0 p=0
(2) 2
C is then the average curvature of |qu (t,8)|° at (0,1). For
good target resolution in both range and radial velocity, |C|
should be as large as possible. C may be found from earlier results

by use of the chain rule:
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0 1X(p,0) 1% _ 8 Ix(x,s)[? (%%)2 R a2|x<12,s)|2 (as)2

3p2 2° Os S

62|X(Tzs2 12 3¢ 3s
+ 2 T 353-5

LX) 1B 2P, dlx(r,e) 12 s

(3.28)
o1 sz as 602

where

T=pcos6 and s -1 = psing . (*.29)

Using equations (3.11) in conjunction with the results of Apperdix

A and (3.15):

32X (p,n) |2 2 2 2 . 2
——54.—| = -2\"cos“6 -2 sin"0 -27Ycos O sing (3.30)
do
p=0
and
lcl = (3% + 42) (3.31a)

d/;2|u'(t)|2dt - | [tu(t)ur (t)at|®

i)

¢ [l @faed fa@er @ 5w)

1/r2 4+ 1/°. (3.31c)



3.2.4 Comparison of the Origin Properties of Narrowband and

Wideband Ambiguity Functions on the (t1,#) Plane
In a small neighbochood about s=1,
s = (L+v/V)/(L-v/¥) = 14+2v/v = 1 -2R/¥V = 1 -g/a .
It follows that

ERPrenlt| e P

(0,1) “

(0,0)

- - o, %lxuﬁf%,ys)lgl

|(0,0)
32 x @z )12 aelxu(f)(T"“)le
© (1,8 =
51X (0,1)  3(ghy)? (0,0)
2
- o gl Ko
(0,0)

(3.32)

(3.33)

(3.34)

The behavior of the wideband and narrowband functions

near the origin of the t -95 plane may now be compared. The com-

parisons are made in Table 3.2 (next page), where the derivatives

are written in terms of U(w), the Fourier transform of u(t).
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Table 3.2 helps to illustrate the nature of the narrow-
band assumption. The |xu(f)'2 expressions become nearly equal to
their |Xu(ul) |2 counterparts only when the signal energy is concen-

trated within a small band of frequencies around a large carrier

DeD An Integral Transformation Between Wideband and Narrow-
band Ambiguity Functions

From the comparison (Table 3.1) of narrowband and wide-
band ambiguity functions at the origin of the (7,#) plane, one
sees that an easy transformation exists between corresponding
derivatives. One may then wonder about the existence of a global

operation that maps Xu(ul)

into X (2) and vice versa.
uu
5.3.1 Symmetrical Forms

Application of Parseval's theorem to the narrowband

function (3.2) yields

36

x Lk g) - 2_];t-jl}(w)0*(w+¢)e-jm1dw : (3.35)

Letting o= w'-g/2:

igt/2 '
Xu(til)('r”‘) i e—g,:_'fu(‘”"¢/2)U“‘(w'+¢/2)e-'jw Tdw'.

(3.36)

It was pointed out in section 3.1 that the magnitude-

squared ambigulity function will be used as & measure of correlation.
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This means that the phase factor exp(j@t/2) in equation (3.36) may

be neglected, so that an equivalent version of Xu(liL) is:

x Mgy = 2 futw-groumtet /2)e ™ ao . (5:37)

(3.37) is then a symmetrical form of the narrowband ambiguity
function [4]. Once again, ¢ =- 20p and B = v/V, where v is positive
toward the receiver.

The Kelly-Wishner function also has a symmetrical form

on the (1,B) plane: Let )'Elff)(r,ﬁ) = Xu(uz)(r,s)s_y-_ﬁ
“1-B
Then,
A(e) 1+B 148 o
(+,8) - f (t)os (B erm) . (5.38)
Let t=t'/(148):
~ 1 ' '
Wiee) - — Jolss) vl
1+8) (1-B) ] /
+%i'_§ )dt' - (5.39)

Applying Parseval's theorem:

~ 2\1/2
X Phe gy - B f Ula(1 +8) Ju*lw( -B)] e 3WPIT 4 (5.00)
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Similarly, it can be shown that

~ 241/2 - -
Ko ke ,p) = LB) / f Ul + ) Lo d P, (5.1)

Equations (3.40 -41) are symmetrical forms of the wideband ambiguity

functions, analogous to equation (3.37) for the narrowband function.
3.3.2 Integral Transformations

Theorem?:

Integral transformations between wideband and narrowband

ambiguity functions are as follows:

A 1/2 \
1) (2) ep) - - (322 /2 [_[xu(ul)(f"'?&”) Jolt -(8)T]y

(3.43)

Proof:

Consider the t-integration of the Woodward function

x et 260) = x He )

(1,8)=(x",-260)

Using equation (3.37):

# Although this theorem is original with the author, the type of
transformation involved here was briefly mentioned in a paper by
E. L. Titlebaum and N. DeClaris [1L].



= —I/U(x+ )U(x-em)e-jxr'ejw'dxdr'.

The r-integration results in the function 2nH(x - w), so that

xu(ul)(r',-zaw)ej“"'df' = fU(x+ Bo)U¥(x - fw) B(x - w)dx

= Ulo(l+8)JU*[w(l -B)] . (3.45)
By equation (3.L0),
2y1/

(1 -p3)Y/
on

2)

,8) = f Ulw(1 +B)] U*[o(1 -e)]e'jw(l'l'B)r .

so that

241/2 1
< (2)(1,5) e ) / f[f\( (1)(1';-2f3w)ejwr dr' e-'jw(lJrB)Td(D

uu

This is the first transformation (3.43).

Similarly, by (3.L40),

g @)y _z! B

75 * 3 '
Tu TP7E 15‘; - = ﬁfxu-s/em)] Us bx (148/20)] e X7 ax
[ - (5/2(»)2]

so that




1V

, Au(?)(r'/(l - Bf2w) ,-8/20)
J - (Bf2w)?1M/2

R AP U(w-B/2)u*(wtB/2). (3.46)

-2:—"{ fU((D- B/?)U*(a)«{- B/e)e-Jde = \(u(:.)(T)B)

Therefore,

\ ) .
1) X t'/(1 - B/2w) ,-B/2w) jw(T -t)._,
(1,B) ﬂ ol - (/22 B 5

which is the second transformation (3.L44).
These transforms are similar in form to Fourier's integral
formula [15] for the regeneration of a function by means of a

double integration (repeated Fourier transform):

£(t) - & ff £(1)e I gz g . (3.47)

The difference is that the above Theorem involves kernels that
are dependent upon w as well as t. The only exception to this

difference occurs when B & O:
300 = x Mes0) (3.18)

an obvious result .
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5ok Volume Properties

Skl Woodward's Result for the Narrowband Case.

Woodward [1] has pointed out that the volume under the
narrowband function IXu(\iL)(T,;é) |2 is constant. This is easily

shown by writing

|

v Bk [ xSy Pasog

T,8

%JI/:/:*(*)U*(X’f eI Ran(y)u(y + e W ax dy dd dt .

(5.49)
Since
%fe"j vyxMag _ yly-x), (3.50)
VTE;) = [[lu(x) |2|u(x+ ) |2dx at
= 1, for unit-energy signels. (3.51)

5.4.2 The Kelly-Wishner Volume Calculation [5].

The volume under |Xu(u‘?)('r,s) |2 on the 1,s plane may be
written:

(2 (2 2
V'r,os) - fﬁxuu )(T:SH dr ds (3.52)

~o O

”©
g—ln'uc/) [[7 u(t)“"(S(t*T)]U*(w)U(w/s)erﬁmdtd-rds,



vhere use has been made of the identity (using Parseval's theorem):

(2) 1 ' -J s
qu (T,S) = m /U((D)U* ((n/s)e wr dw . (3'53)
fu“‘[s(t+1’)]e'jmd1’ = %U‘(m/s)e-‘jwt (3.54)
and
fu(t)e-'jwtdt = U(w) (3.55)
so that

@1 LU_@_»Ls)l_ |u(e) |Pawds (3.56)

‘I.’

We can now make one of two reasonable assumptions:

(1) u(t) is real, which implies that |U(a>)|2 = lU(-w)|2, or

(2) wu(t) is complex with real and imaginary parts a Hilbert pair
(analytic), which implies that |U(w)|® = 0, w < O.

For assumption (2) with w = w's:

T,s

\ (@) %ff |U(w')|2|U(sw')|2ds dw'
00

8

o"\ o'\

w

"2 ~
_'_L(a) l [Q—J;Y-fw'lu(w's)leds]dw
2
M dw . (3.57)

Assumption (1) would, of course, give a similar answer.
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Kelly and Wishner did not energy normalize the returned
waveform, so the original Kelly-Wishner ambiguity function lacks

the factor of s/2 in front of the expression for X (2.

v For this

reason their volume result is somewhat different from the one
obtained above.
Tf the signal were narrowband, one could evaluate (3.57)

in the manner indicated by Table 5.1, yielding

(2) on
VT,S -] Eo' . (3058)

Even though the volume of the Woodward function is appar-
ently constant, the volume °f'|xu$?%2 decreases with larger carrier
frequency. This apparent contradiction will be resolved in the

next section.

5.4.3 A More Realistic Approach to Narrowband Volume.

Cursory observation of Woodward's volume theorem indicates
that the g-integration is, per se, unrealistic. In Chapter II,
¢ was defined as

2w v
O

. (3.59)

<?

To integrate ¢ form - w to + » would violate the theory of rela-
tivity for a radar signal, and would violate the implicit assumption
that |v| < |v| for sonar. But this objection is eclipsed by further
problems when one considers the validity of Woodward's model of

the returned signal.



Let us, for the cake of argument, assume a transmitted

signal with linear phase:
u(t) = a(t)exp(Jat) - (3.60)

This signal may be wideband or narrowband, depending uron a(t)

and w . Using the model of returned signal leading to (2.11):
r(t) = s/2u(s(t+7)] = sl/za[s(tﬂ)]-exp[jwo[s(t+r)]] . (3.61)

In the narrowband argument, this retuned signal is assumed to have

the form:

r(t) = u(t+r)exp(-3gt) = a(ttr)exp(ju, (t+7))exp(-jgt). (3.62)

Let us investigate the conditions under which (3.61) and (3.62) are
equal.

It was shown in Chapter II that
s = (1 +B)/(1 -B) (5.63)

where B = v/v, a relative velocity factor.
Since B <1,

1/(1-B) = L+B+8+p 7+ ... (3.65)

so that
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s = (L+B+B2+E24...) + (B+82+p 48 4...) . (3.65)

Therefore (3.61) becomes

r(t) = (1+2B+2t32+ ...)1/2 a[(1+2B+252+ cee)(t47))

exp[,ja)o(1+ 2B+ 262+ cea)(t4T)] (3.66)

If B << 1 and w062 <1, (woﬁ need not be so small), then
r(t) = a(ttr)exp(ju (t+7) ] expli2n B(t+7)]. (3.67)
By substituting (3.59) into (3.62), the narrowband model becomes

r(t) = a(t+T)exp(jwo(t+‘r))exp(jeu)oﬁt) . (5.68)

Since the quantity |Xx|° is of ultimate importance, phase
factors that are not time dependent may be neglected. Thus the
narrowband model (3.68) is nearly identical to the Kelly-Wishner

echo provided that:

(1) |B] <<1
(3.69)
(2) 0 f° <1 .

Observe that neither of the above conditions requires that wOB <1.
In the calculation of narrowband ambiguity volume, even

those limits commensurate with relativity theory are therefore
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generally unacceptable (or, at least, unrealistic). Limits that

take conditions (3.69) into account would be

s < <-3L o where w_>> 1.
Wy W, 0

A volume calculated with such limits would generally vary as 1/05’

as in equation (3.58) for v (2)

5.h4.4 Upper Bounds to Wideband Ambiguity Volume

Theorem: The volume of the wideband ambiguity function |xu2%
on the r, P plane is less than or equal to 2”2(Dt2/5)1/2’ where

Dtg = j¥2|u(t)!2dt, the mean-squared time duration.

Proof: Let V (2)

.6 ambiguity volume on the 7,f plane
J

{

where iﬁi?)(r;ﬂ) is given by (3.40), so that

|X (2)(r,a)| ar ap (3.70)

h‘——aa

v (3) . ('—‘31 f f ff ULx(1+8) U x(1-8) JUX(y (148) JULy (1-B) ]

T’B (277)
(3.71)
Performing the 7-integration and making use of the relation:
[e 3 @) (xn)ry, - o5 5 -¥) (3.72)

and then performing the y-integration, one is left with

~



,B = f %‘Elz(s)dﬁ (3.75)
where
z2(8) - _[lu[x(1+6)]|2|U[x(1-6)|2dx- (3.74)

Since z(B) = Z(-B), it follows that,

1

[ 28308 = 0. (3.75)
=1

Applying the Schwarz inequality:

1/2

(1-6%)1%2(8) < 1(148) [ |ulx(249)1] Yax. -(1-8) [ |ulx(1-8)1] Hax /2

- fiv@) e - (3.76)

Combining (3.73), (3.75), and (3.76):

1l
ng) 2 2)1 5 f () Ho (3.77)

Letting B = sin 6, dB = cos 9d9:

1 n/2
£ e B ) -ﬂfe de = n . (3.78)

Therefore,

47
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Vrfg) < -é— j‘IU(w)!hdw . (3.79)

We now utilize an inequality of B. v. Sz.Nagy [16, 17]
as given in Appendix B. Invoking the second part of Nagy's in-

equality with a=2, b=2, p=2, r=2, gives, for a unit energy

signal:
-3/2
p) 5 (2
f,w Y2 1218 v e | M2
VR @@ &
- (%,1),(,2)1/2 : (3.80)

Therefore, V 2) < 21(2(D 2/5)1/2 QED

T, = t )

It is therefore evident that a signal with small mean

square time duration will have comparatively small ambiguity volume

on the 7, B plane.

By the RMS uricertainty relation (Appendix C):
2 2
D~ >1/4D ° .

If it is desired to make the volume <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>